Введение

Глава 1. Основные положения и понятия

1 Понятие о температуре и об устройствах измерения температур

1.2 Температурные шкалы

3 Международная температурная шкала

Глава 2. Методы измерения температуры

2.1 Контактный метод измерения температуры

2 Бесконтактный метод измерения температуры

3 Люминесцентные методы измерения температуры

Заключение

Список литературы

Введение

Высокопроизводительная, экономичная и безопасная работа различных технологических агрегатов требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования.

Основными параметрами (величинами), которые необходимо контролировать при работе агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.

Температура является одним из важнейших параметров технологических процессов. Она обладает некоторыми принципиальными особенностями, что обусловливает необходимость применения большого количества методов и технических средств для ее измерения.

.Основные положения и понятия

1 Понятие о температуре и об устройствах измерения температур

Температурой называют величину, характеризующую тепловое состояние тела. Температура может быть определена как параметр теплового состояния. Значение этого параметра обусловливается средней кинетической энергией поступательного движения молекул данного тела. При соприкосновении двух тел, например газообразных, переход тепла от одного тела к другому будет происходить до тех пор, пока значения средней кинетической энергии поступательного движения молекул этих тел не будут равны. С изменением средней кинетической энергии движения молекул тела изменяется степень его нагретости, а вместе с тем изменяются также физические свойства тела. При данной температуре кинетическая энергия каждой отдельной молекулы тела может значительно отличаться от его средней кинетической энергии. Поэтому понятие температуры является статистическим и применимо только к телу, состоящему из достаточно большого числа молекул; в применении к отдельной молекуле оно бессмысленно.

К пространству со значительно разреженной материей статистические законы неприменимы. Температура в этом случае определяется мощностью потоков лучистой энергии, пронизывающей тело, и равна температуре абсолютно черного тела с такой же мощностью излучения. Известно, что с развитием науки и техники понятие «температура» расширяется. Например, при исследованиях высокотемпературной плазмы было введено понятие «электронная температура», характеризующее поток электронов в плазме.

Возможность измерять температуру термометром основывается на явлении теплового обмена между телами с различной степенью нагретости и на изменении термометрических (физических) свойств веществ при нагревании. Следовательно, для создания термометра и построения температурной шкалы, казалось бы, возможно выбрать любое термометрическое свойство, характеризующее состояние того или иного вещества и на основании его изменений построить шкалу температур. Однако сделать такой выбор не так легко, так как термометрическое свойство должно однозначно изменяться с изменением температуры, не зависеть от других факторов и допускать возможность измерения его изменений сравнительно простым и удобным способом. В действительности нет ни одного термометрического свойства, которое бы в полной мере могло удовлетворить этим требованиям во всем интервале измеряемых температур.

На примере ртутного и спиртового термометра обычного типа видно, что если шкалы их между точками, соответствующими температурам кипения воды и таяния льда при нормальном атмосферном давлении, разделить на 100 равных частей (считая за 0 точку таяния льда), то очевидно, что показания обоих термометров ртутного и спиртового будут одинаковы в точках 0 и 100, потому что эти температурные точки были приняты за исходные для получения основного интервала шкалы. Если этими термометрами будем измерять одинаковую температуру какой-либо среды не в этих точках, то показания их будут различны, так как коэффициенты объемного теплового расширения ртути и спирта различно зависят от температуры.

Термометром называют устройство (прибор), служащее для измерения температуры путем преобразования ее в показания или сигнал, являющийся известной функцией температуры. Чувствительным элементом термометра называют часть термометра, преобразующую тепловую энергию в другой вид энергии для получения информации о температуре. Различают термометры контактные и бесконтактные. Чувствительный элемент контактного термометра входит в непосредственное соприкосновение с измеряемой средой. Пирометром называют бесконтактный термометр, действие которого основано на использовании теплового излучения нагретых тел. Термокомплектом называют измерительную установку, состоящую из термометра, не имеющего собственной шкалы, и вторичного прибора, преобразующего выходной сигнал термометра в численную величину.

2 Температурные шкалы

Первым устройством, созданным для измерения температуры, считают водяной термометр Галилея (1597 г.). Термометр Галилея не имел шкалы и был, по существу, лишь индикатором температуры. Полвека спустя, в 1641 г., неизвестным для нас автором был изготовлен термометр со шкалой, имеющей произвольные деления. Спустя еще полвека Ренальдини впервые предложил принять в качестве постоянных точек, характеризующих тепловое равновесие, точки плавления льда и кипения воды. При этом температурной шкалы еще не существовало. Первая температурная шкала была предложена и осуществлена Д.Г. Фаренгейтом (1724 г). Температурные шкалы устанавливались произвольным выбором нулевой и других постоянных точек и произвольным принятием интервала температуры в качестве единицы. Фаренгейт не был ученым. Он занимался изготовлением стеклянных приборов. Ему стало известно, что высота столба ртутного барометра зависит от температуры. Это навело его на мысль создать стеклянный ртутный термометр с градусной шкалой. В основу своей шкалы он положил три точки: 1 - "точка сильнейшего холода (абсолютный нуль)", получаемая при смешениях в определенных пропорциях воды, льда и нашатыря, и принятая им за нулевую отметку (по нашей современной шкале, равная примерно -17,8°С); 2- точка плавления льда, обозначенная им +32°, и 3 - нормальная температура человеческого тела, обозначенная +96° (по нашей шкале +35,6°С). Температура кипения воды первоначально не нормировалась и лишь позднее была установлена +212° (при нормальном атмосферном давлении).

Через несколько лет, в 1731 г. Р.А. Реомюр предложил использовать для стеклянных термометров спирт такой концентрации, который при температуре плавления льда заполнял бы объем в 1000 объемных единиц, а при температуре кипения расширялся бы до 1080 единиц. Соответственно температуру плавления льда Реомюр предложил первоначально обозначить 1000°, а кипения воды 10800 (позднее 0° и 80°).

В 1742 г. А. Цельсий, используя ртуть в стеклянных термометрах, обозначил точку плавления льда за 100°, а точку кипения воды за 0°. Такое обозначение оказалось неудобным и спустя 3 года Штремер (или возможно К. Линней) предложил изменить обозначения, принятые вначале Цельсием, на обратные. Был предложен и ряд других шкал. М. В. Ломоносов предложил жидкостный термометр со шкалой 150° в интервале от точки плавления льда до точки кипения воды.

И.Г. Ламберт (1779 г.) предлагал воздушный термометр со шкалой 375°, принимая за 1° одну тысячную часть расширения объема воздуха. Известны также попытки создать термометры на основе расширения твердых тел (П. Мушен-брук, 1725 г.)

Все предлагаемые температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связано с температурой. Но в дальнейшем выяснилось, что термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

В 1848 г. Кельвин (У. Томсон) предложил построить температурную шкалу на термодинамической основе, приняв за нулевое значение температуру абсолютного нуля и обозначив температуру плавления льда +273,1°. Термодинамическая температурная шкала базируется на втором законе термодинамики. Как известно, работа в цикле Карно пропорциональна разности температур и не зависит от термометрического вещества. Один градус по термодинамической шкале соответствует такому повышению температуры, которое отвечает 1/100 части работы по циклу Карно между точками плавления льда и кипения воды при нормальном атмосферном давлении. Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

По мере расширения научных наблюдений и развития промышленного производства возникла естественная необходимость установить какую-то единую температурную шкалу. Первая попытка в этом направлении была предпринята в 1877 г., когда Международный комитет мер и весов принял в качестве основной температурной шкалы стоградусную водородную шкалу. За нулевую отметку была принята точка таяния льда, а за 100° - точка кипения воды при нормальном атмосферном давлении 760 мм. рт. ст. Температура определялась по давлению водорода в постоянном объеме. Нулевая отметка соответствовала давлению 1000 мм. рт. ст. Градусы температуры по этой шкале очень близко совпадали с градусами термодинамической шкалы, однако практическое применение водородного термометра ограничивалось из-за небольшого интервала температур примерно от -25 до +100°. В начале XX в. широко применялись шкалы Цельсия (или Фаренгейта - в англо-американских странах) и Реомюра, а в научных работах - также шкалы Кельвина и водородная.

1.3 Международная температурная шкала

При резко возросших потребностях в точной оценке температуры пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому после нескольких лет подготовки и предварительных временных решений VIII Генеральная конференция мер и весов приняла в 1933 г. решение о введении Международной температурной шкалы (МТШ). Это решение было в законодательном порядке утверждено большинством развитых стран мира. В СССР Международная температурная шкала была введена с 1 октября 1934 г. (Общесоюзный стандарт ОСТ ВКС 6954).

Международная температурная шкала является практическим осуществлением термодинамической стоградусной температурной шкалы, у которой температура плавления льда и температура кипения воды при нормальном атмосферном давлении соответственно-обозначены через 0° и 100°. МТШ основывается на системе постоянных, точно воспроизводимых температур равновесия (постоянных точек), которым присвоены числовые значения. Для определения промежуточных температур служат интерполяционные приборы, градуированные по этим постоянным точкам. Температуры, измеряемые по международной шкале, обозначаются через СС. В отличие от градусов шкалы Цельсия - базирующейся также на точках плавления льда и кипения воды при нормальном атмосферном давлении и имеющей обозначения 0° и 100°С, но построенной на иной основе (на линейной зависимости между температурой и расширением ртути в стекле), градусы по международной шкале стали называть "градусами международными" или "градусами стоградусной шкалы". Основные постоянные точки МТШ и присвоенные им числовые значения температур при нормальном атмосферном давлении приводятся ниже: (так же см. рис. №1):

а) температура равновесия между жидким и газообразным кислородом (точка кипения кислорода) - 182,96°

б) температура равновесия между льдом и водой, насыщенной воздухом (точка плавления льда) 0.000°

в) температура равновесия между жидкой водой и ее паром (точка кипения воды) 100,000°

г) температура равновесия между жидкой серой и ее паром (точка кипения серы) 414,60°

д) температура равновесия между твердым и жидким серебром (точка затвердевания серебра) 961.93°

е) температура равновесия между твердым и жидким золотом (точка затвердевания золота) 1064,43°

Рис. № 1 Международная температурная шкала

2. Методы измерения температуры

Для определения значения температуры какого-либо тела необходимо выбрать эталон температуры, то есть тело, которое при определённых условиях, равновесных и достаточно легко воспроизводимых, имело бы определённое значение температуры. Это значение температуры является реперной точкой соответствующей шкалы температур - упорядоченной последовательности значений температуры, позволяющей количественно определять температуру того или иного тела. Температурная шкала позволяет косвенным образом определять температуру тела путем прямого измерения какого-либо его физического параметра, зависящего от температуры.

Наиболее часто при получении шкалы температур используются свойства вода. Точки таяния льда и кипения воды при нормальном атмосферном давлении выбраны в качестве реперных точек в современных (но не обязательно изначальных) температурных шкалах, предложенных Андерсом Цельсием (1701-1744), Рене Антуаном Фершо Реомюром (1683 - 1757), Даниэлем Габриэлем Фаренгейтом (1686-1736). Последний создал первые практически пригодные спиртовой и ртутный термометры, широко используемые до сих пор. Температурные шкалы Реомюра и Фаренгейта применяют в настоящее время в США, Великобритании и некоторых других странах.

Введенную в 1742 году температурную шкалу Цельсия, который предложил температурный интервал между температурами таяния льда и кипения воды при нормальном давлении (1 атм или 101 325 Па) разделить на сто равных частей (градусов Цельсия), широко используют и сегодня, правда в уточненном виде, когда один градус Цельсия считается равным одному кельвину. При этом температура таяния льда берется равной 0 °C, а температура кипения воды становится приблизительно равной 99,975 °C. Возникающие при этом поправки, как правило, не имеют существенного значения, так как большинство используемых спиртовых, ртутных и электронных термометров не обладают достаточной точностью (поскольку в этом обычно нет необходимости). Это позволяет не учитывать указанные, очень небольшие поправки.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала - термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Эта температурная шкала подробно рассмотрена в третьей главе. Отметим только, что единицей измерения температуры в этой температурной шкале является один кельвин (1 К), одна из семи основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина) (1824-1907), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала - международная практическая. Эта шкала имеет 11 реперных точек - температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина - легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Тело, с помощью измерения термометрического признака которого осуществляется измерение температуры, называется термометрическим телом.

Термометрическими признаками могут быть изменения: объёма газа или жидкости, электрического сопротивления тел, разности электрического потенциала на границе раздела двух проводящих тел и т.д. Соответствующие этим признакам приборы для измерения температуры (термометры) будут: газовый и ртутный термометры, термометры, использующие в качестве датчика термосопротивление или термопару.

По принципу действия все термометры делятся на следующие группы, которые используются для различных интервалов температур:

Термометры расширения от - 260 до +700 °С, основанные на изменении объемов жидкостей или твердых тел при изменении температуры.

Манометрические термометры от - 200 до +600 °С, измеряющие температуру по зависимости давления жидкости, пара или газа в замкнутом объеме от изменения температуры.

Термометры электрического сопротивления стандартные от -270 до +750 °С, преобразующие изменение температуры в изменение электрического сопротивления проводников или полупроводников.

Термоэлектрические термометры (или пирометры), стандартные от -50 до +1800 °С, в основе преобразования которых лежит зависимость значения электродвижущей силы от температуры спая разнородных проводников.

Пирометры излучения от 500 до 100000 °С, основанные на измерении температуры по значению интенсивности лучистой энергии, испускаемой нагретым телом,

Термометры, основанные на электрофизических явлениях от -272 до +1000 °С (термошумовые термоэлектрические преобразователи, объемные резонансные термопреобразователи, ядерные резонансные термопреобразователи).

1 Контактный метод измерения температуры

Существуют два основных способа для измерения температур - контактные и бесконтактные. Контактные способы основаны на непосредственном контакте измерительного преобразователя температуры с исследуемым объектом, в результате чего добиваются состояния теплового равновесия преобразователя и объекта. Этому способу присущи свои недостатки. Температурное поле объекта искажается при введении в него термоприемника. Температура преобразователя всегда отличается от истинной температуры объекта. Верхний предел измерения температуры ограничен свойствами материалов, из которых изготовлены температурные датчики. Кроме того, ряд задач измерения температуры в недоступных вращающихся с большой скоростью объектах не может быть решен контактным способом.

Газовый термометр постоянного объёма (рис. № 2) состоит из термометрического тела - порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, - давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.

Рис. № 2 Схема газового термометра

Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра - хорошо совпадает с абсолютной шкалой температур.

Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.

Жидкостной термометр (рис. № 3) - это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия.

Рис. № 3 Схема жидкостного термометра

а - комнатный термометр с наружной шкалой;

б - лабораторный термометр с вложенной шкалой, имеющий на шкале точку 0°С.

Другими видами широко распространённых жидкостных термометров являются спиртовой (от -8 °C до +8 °C) и пентановый (от -200 °C до +35°C). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.

С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.

В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела - металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (~20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.

В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.

Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.

Другой принцип измерения температуры реализован в термопарах. Термопара (рис. № 4) представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (эталонный спай) - при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а следовательно, температуру измерительного спая.

В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком - возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий - платина.

Рис. № 4 Схема термопары

Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.

В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов

2 Бесконтактный метод измерения температуры

Бесконтактный способ основан на восприятии тепловой энергии, передаваемой через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого объема. Этот способ менее чувствителен, чем контактный. Измерения температуры в большой степени зависят от воспроизведения условий градуировки при эксплуатации, а в противном случае появляются значительные погрешности. Устройство, служащее для измерения температуры путем преобразования ее значений в сигнал или показание, называется термометром (ГОСТ 13417-76).- это термоэлементы, включенные последовательно, которые используют известный Seebeck - эффект. Термоэлемент состоит из двух электропроводных материалов, которые расположены в виде проводящих дорожек и которые в одной точке (так называемой hot junction) контактируют друг с другом. Если за счет внешнего воздействия возникнет разница температур между точкой контакта (hot junction) и обеими открытыми концами (cold junction), то на обоих концах термоэлементов появится напряжение в несколько милливольт.

При бесконтактном способе измерения температуры повышение температуры точки «hot junction» вызывается за счет абсорбирования попадающего в эту точку инфракрасного излучения. Каждый объект излучает инфракрасный свет, причем энергия этого света повышается с повышением температуры объекта. Базируясь на этом эффекте Thermopile-модули измеряют излучаемую мощность и таким образом с высокой точностью определяют температуру объекта.

3 Люминесцентный метод измерения температуры

В основе люминесцентных методов измерения температуры лежит температурная зависимость интенсивности люминесцентного излучения некоторых люминофоров, которое находит применение в различных датчиках измерения температуры и термопокрытиях.

Современные волоконно-оптические датчики позволяют измерять многие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике: безындукционность (т.е. неподверженность влиянию электромагнитной индукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.

Датчик на основе теплового излучения. В качестве устройств для измерения температуры могут быть использованы волоконно-оптические датчики на основе теплового излучения, сущность которых состоит в следующем. Изучаемое вещество при температуре большей 0 К вследствие тепловых колебаний атомов и молекул испускает тепловое излучение. Энергия излучения увеличивается по мере повышения температуры, а длина волны, на которой излучение максимально, уменьшается. Соответственно для определения температуры можно использовать формулу Планка для энергии теплового излучения черного тела на фиксированной длине волны или в диапазоне волн.

Основным преимуществом данного способа является возможность бесконтактного измерения высоких температур. В зависимости от диапазона измеряемых температур выбирают световые детекторы и оптические волокна. Область измерения температур для волоконно-оптических датчиков излучения находится в пределах от 400 до 2000 °С. При использовании оптических волокон, прозрачных для инфракрасных лучей с длиной волны 2 мкм и более, можно осуществлять измерение и более низких температур.

Датчик на основе поглощения света полупроводником. Известны также волоконно-оптические датчики, работа которых основана на оптических свойствах некоторых полупроводников. Используемый полупроводник имеет граничную длину волны спектра оптического поглощения. Для света с более короткой длиной волны, чем у проводника, поглощение усиливается, причем по мере роста температуры граничная длина волны отодвигается в сторону более длинных волн (около 3 нм/К). При подаче на полупроводниковый кристалл луч от источника света, имеющего спектр излучения в окрестности указанной границы спектра поглощения, интенсивность света, проходящего через светочувствительную часть датчика, с повышением температуры будет падать. По выходному сигналу детектора, указанным методом можно регистрировать температуру.

Используя данный метод можно мерить температуру в интервале от 30 до 300 °С с погрешностью ±0,5 °С.

Датчик на основе флуоресценции. Данный датчик устроен следующим образом. На торец оптического волокна светочувствительной части нанесено флуоресцентное вещество. Флуоресцентное излучение, возникающее под воздействием ультрафиолетовых лучей, проводимых оптическим волокном, принимается этим же волокном. Температурный сигнал выявляется путем вычисления отношения соответствующих значений интенсивности флуоресцентного излучения для сигнала с длиной волны, сильно зависящего от температуры к интенсивности сигнала с другой длиной волны, слабо зависящего от температуры.

Область измеряемых температур таким датчиком находится в пределах от -50 до 200 °С с погрешностью ±0,1 °С.

Использование волоконно-оптических датчиков, при всей своей привлекательности, позволяет производить измерение температуры только в локальной точке объекта, что несколько сужает область их применения.

Заключение

Температура является одним из основных параметров, подлежащих контролю со стороны систем автоматического управления металлургическими процессами. В условиях агрессивных сред и высоких температур, наиболее подходящими для использования являются фотоэлектрические пирометры. Они позволяют контролировать температуру от 100 до 6000 °С и выше. Одним из главных достоинств данных устройств является отсутствие влияния температурного поля нагретого тела на измеритель, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Так же фотоэлектрические пирометры обеспечивают непрерывное автоматическое измерение и регистрацию температуры, что позволяет использовать их в системах автоматического управления процессами без дополнительных затрат на приобретение и обслуживание устройств сопряжения.

Представленный в работе обзор люминесцентных методов измерения температуры по сравнению с контактными методами обладает теми же преимуществами, что и оптические методы. В то же время он является менее сложным при организации процесса изучения температуры и не менее точным по сравнению с другими оптическими методами. Кроме того, использование свойств люминесценции делает возможным разработку методов измерения температурных полей объектов сложной геометрической формы.

Из вышеприведенного обзора очевидна необходимость дальнейшей разработки и совершенствования технологий измерения температуры с использованием люминесцентных методов.

температура термометр люминесцентный

Литература

1.Преображенский, В.П. Теплотехнические измерения и приборы. / В.П. Преображенский - М.: Энергия, 1978. - С. 704

Чистяков, С.Ф., Радун Д. В. Теплотехнические измерения и приборы. / С.Ф. Чистяков - М.: Высшая школа, 1972. - С. 392

Никоненко, В.А., Сильд Ю.А., Иванов И.А. Разработка системы метрологического обеспечения измерительных тепловизорных приборов. - Измерительная техника, № 4, 2004. - С. 48-51

Измерения в промышленности: Справ. Изд.

Цель лекции : изучение основных понятий, физических принципов и технических средств регулирования и измерения температуры в различных точках грузового помещения вагона и тракта холодильной машины.

Основные понятия и физические принципы

Температура t - физическая величина, характеризующая степень нагретости тела. Она (а также давление) проявляет микроскопическую природу вещества, выводя ее на наглядный микроскопический уровень. Температура выступает как мера интенсивности теплового движения молекул. Для измерения этого параметра состояния изготовляют датчики, в основе которых лежат различные физические эффекты, сопровождающие вариации температуры: изменение объема газовой, жидкой или твердой сред, электрического сопротивления чувствительного элемента, возбуждение термоэлектродвижущей силы, восприятие излучения нагретого тела и др.

Количественное содержание измеренной температуры определяется с помощью именованных шкал, все разнообразие которых можно разделить на 2 класса:

  1. эмпирический (Фаренгейта, Реомюра, Цельсия).
  2. термодинамический (Кельвина, Ренкина).

Температурная шкала Реомюра - практическая шкала, предложенная им в 1730 году. Единица шкалы - градус Реомюра (°R). 1 градус Реомюра равен 1/80 части температурного интервала между точками таяния льда (0°R) и кипения воды (80°R), т. е. 1°R = 1.25°С, 1°C = 0.8°R. Шкала Реомюра вышла из употребления.

Шкалы Фаренгейта и Ренкина получили распространение лишь в англоязычных странах (Великобритания, США и др.). Наиболее употребимой во всем мире является эмпирическая шкала Цельсия, где реперными (узловыми, точными) точками приняты температуры тающего льда (0 о С) и кипения (100 о С) при нормальном атмосферном давлении. Шкала Кельвина имеет ту же количественную величину шага измерения температур (1 К = 1 о С), но ее начало смещено на 273,16 К - в точку абсолютного нуля (прекращения теплового движения молекул), т.е. T = t + 273,16 К. Эта шкала существенна для термодинамического анализа состояний и процессов.

Техническая система для измерения температуры включает в себя три компонента:

  • чувствительные элементы (датчики, первичные преобразователи);
  • промежуточные преобразователи;
  • оконечные приборы (показывающие и регистрирующие приборы).

Датчики температуры (термометры)

Для измерения меры интенсивности теплового движения молекул изготавливают датчики температуры , в основе которых лежат различные физические эффекты, сопровождающие вариации температуры: изменение объема вещества, электрического сопротивления, возбуждение термоэлектродвижущей силы, восприятие излучения нагретого тела и др.

Датчики воспринимают контролируемую величину и преобразуют ее в сигнал, более удобный для практического использования. Ниже перечислены некоторые типы измерительных преобразователей.

Дилатометрические датчики. Используют свойство расширения веществ (твердых, жидких и газообразных) при изменениях температуры.

Измерительная шкала жидкостных термометров (на основе ртути, спирта, толуола и др.) может быть совмещена с чувствительным элементом или вынесена с помощью промежуточного преобразователя (рис. 1). Характерный диапазон измерений: -100…750 о С.

Рис. 1 Электроконтактный термометр

Электроконтактный термометр состоит из: 1 - ртутный термометр; 2 - щиток; 3 - лампочка; 4 - кнопка включения; 5 - источник питания.

Газовые (манометрические) термометры (рис.2) отражают зависимость давления среды, заполняющей датчик, от изменяющейся температуры в герметичной системе (термобаллон с трубкой Бурдона). Диапазон измерений: -200…550 о С.

Рис. 2 Манометрический термометр

Манометрический термометр состоит из: 1 - термобаллон; 2 - манометр; 3 - капиллярная трубка.

Твердотелые (биметаллические) термометры образованы как прочное соединение двух пластинок из металлов с разными коэффициентами линейного расширения. При увеличении температуры одна из пластинок стремиться удлинится, а другая препятствует этому, и биметаллическая пластинка изгибается. Диапазон температур - от -60 до 200 о С.

Термометры сопротивления . Измерение температуры термосопротивлениями основано на свойстве проводников и полупроводников изменять свое электрическое сопротивление при изменении температуры.

Вид функции R = f(t) зависит от природы материала. Для изготовления чувствительных элементов серийных термосопротивлений применяются чистые металлы. Наиболее полно указанным требованиям отвечают: никель, железо, медь и др.

Основной недостаток термосопротивлений: большая инерционность (до 10 мин.).

Для того чтобы произвести измерение температуры наиболее часто применяются термосопротивления типов: ММТ-1, ММТ-4, ММТ-6 (медно-марганцевые); КМТ-1, КМТ-4 (кобальто-марганцевые).

Металлический термометр сопротивления (он представляет собой патрон, имеющий внутри спираль из тонкого медного проводника) называют терморезистором, а полупроводниковый - термистором. У терморезисторов с ростом температуры сопротивление увеличивается (2…3 % на 1 о С), а у термисторов - падает (3…5 % на 1 о С). Диапазон измерений: -200…500 о С.

Термоэлектрические датчики (термопары). Их действие основано на температурной зависимости контактной электродвижущей силы, возникающей в замкнутой цепи двух разнородных металлических проводников (рис. 3). Чувствительный элемент датчика - контакт проводников, находящихся в точке, где необходимо измерить температуру (горячий спай); второе соединение (вне объекта) называют «холодный спай». Характерные материалы термопар: медь-константан, хромель-алюмель, платинородий-платина и др. Диапазон измерений: -200…1600 о С.

Рис. 3 Термопара

Пирометры излучения . Данные приборы основаны на применении теплового излучения нагретых тел. Верхний предел измерения температуры пирометра излучения практически не имеет ограничений. В основе измерения лежит бесконтактный способ, в результате этого отсутствует искажение температурного поля, вызываемое введением преобразовательного элемента прибора в измеряемую среду. Возможно измерение температуры пламени и высоких температур газовых потоков при больших скоростях. Технические пирометры охватывают диапазон температур от 400 до 4000 о С.

Промежуточные преобразователи

Задача промежуточных преобразователей - перевести часто слабый или нелинейный сигнал датчика в пригодный для практического использования сигнал. Измерение производят либо по методу непосредственной оценки (милливольтметром), либо компенсационным методом (потенциометром). Наиболее распространенными промежуточными преобразователями являются электрические мостовые схемы. Мост образуется последовательным соединением четырех электрических сопротивлений в замкнутый контур, который активизируется внешним источником напряжения (постоянного или переменного). При измерении температур применяются уравновешенные и неуравновешенные мосты.

Уравновешенные мосты. К одной из диагоналей уравновешенного моста (рис.4) подключают источник питания, к другой (измерительной диагонали) - гальванометр. Два резистора в плечах имеют постоянное сопротивление (R 2 , R 4), два других - переменное (R 1 - регулируемое сопротивление, R t воспринимает изменение температуры). Уравнительное сопротивление R 1 подбирается так, чтобы R 1 /R 2 = R t /R 4 . При этом в измерительной диагонали удовлетворяется условие уравновешенности моста i o = 0.

Градируя положение движка реостата 1 в зависимости от температуры, измеренной по образцовому прибору, получают возможность определять значение температуры в месте установки датчика. Так как условие равновесия моста не зависит от уровня напряжения U ab , обеспечивается малая погрешность измерения (порядка 1%) при обычной нестабильности источника.

Рис. 4 Схема уравновешенного моста Уитстона: 1 - уравнительное сопротивление; 2 - гальванометр

На рефрижераторном подвижном составе для измерения температуры используют терморезисторы типа РТ (платиновые) и ТСМ - 010 (медные), термисторы типа TNM и MMT.

Неуравновешенные мосты. При большей простоте и надежности по сравнению с уравновешенными, они имеют и более высокое значение погрешности.

Три плеча у моста (рис.5) имеют постоянные сопротивления, а одно (R t) изменяется при вариациях температуры, но уровень величины i о зависит от напряжения источника питания U ab , что требует его регулированиии стабилизации. Если в качестве датчика температуры используют термистор, то вследствие квадратичной зависимости температурного коэффициента его сопротивления шкала измерительного прибора будет неравномерной. Это неудобно, и обычно схемными средствами добиваются линейной характеристики R t = f(t).

Рис. 5 Схема неуравновешенного моста:1 - установочное сопротивление

Примером одной реализаций неуравновешенного моста является логометр. Измерение температуры с его помощью основано на взаимодействии поля постоянного магнита и магнитных полей, вызываемых токами, протекающими в двух крестообразно расположенных многовитковых проволочных рамках подвижной части измерительной система. Рамки подключены к противоположным плечам моста. Термосопротивление включают последовательно в цепь одной из рамок. Плечевые резисторы, кроме R t , не меняют своего сопротивления. Ток в одном плече и его рамке не меняет своего значения, ток в другом плече определяется сопротивлением термистора R t , зависящим от температуры.

Стрелка магнитоэлектрического гальванометра отклоняется на угол, определяемый значением температуры, и показывает это значение на отградуированной шкале. Обычно предусматривается возможность подключения к логометру и других измерительных комплектов. Прибор работает с термистором, электрическим контактным термометром, резистором и др.

Показывающие и регистрирующие приборы

При измерении температуры в качестве показывающих и регистрирующих приборов применяются электронные автоматические мосты (ЭПП, КСП и др.), которые работают совместно с платиновыми терморезисторами. В цепь термопар часто включают потенциометры, так как термоэлектродвижущая сила эффекта Зеебека невелика (10…50 мкв/С о). Все более широкое применение находят приборы с цифровой индикацией и регистрацией температуры.

Для автоматической непрерывной регистрации температуры воздуха в груженом рейсе применяют термографы . Термограф (рис. 6) состоит из барабана и датчика (биметаллической пластинки), воспринимающего вариации температуры.

Рис. 6 Схема устройства термографа

1 - биметаллическая пластинка; 2 - стержень; 3 - рычаг; 4 - вращающийся барабан

Под действием температурных изменений происходит деформация биметаллической пластинки 1, и подвижной ее конец перемещается, механически воздействуя на длинный рычаг 3. Конец рычага 3 с пером в зависимости от колебаний температуры воздуха перемещается вверх или вниз и чертит подаваемый на него чернилами кривую линию на специальной градуированной бумажной ленте. Сменная лента в продольном направлении разделена на сутки и часы, а в поперечном на градусы. Барабан 4 вращается посредством часового механизма, совершая один оборот за одни или несколько суток.

Регулирующие приборы

Терморегулирующий вентиль (ТРВ) . Он предназначен для автоматического регулирования подачи жидкого хладагента в испаритель холодильной машины в соответствии со сложившейся тепловой нагрузкой в грузовом помещении рефрижераторного вагона. Наглядным образцом служит рис. 7.

Действие ТРВ зависят от температуры перегрева всасываемых компрессором паров хладагента над температурой кипения жидкого хладагента в испарителе. Увеличение этой разности означает, что количество хладагента, пропускаемого вентилем, меньше необходимого, а при снижении - больше. Таким образом, ТРВ поддерживает постоянный перегрев пара на выходе из испарителя. При отклонении температуры от заданного значения, на которое настроен прибор, изменяется давление в термобаллоне. Импульс по давлению передается через капилляр на мембрану и через нее - на клапан. Перемещение клапана приводит к большему или меньшему открытию проходного сечения для пропуска паров хладона через испаритель, т.е. на всас компрессора. Пружина вместе с регулировочным винтом позволяют задать такое базовое значение проходного сечения клапана, чтобы перегрев паров на выходе испарителя составил 4…7 о С

Рис. 7 Схема действия терморегулирующего вентиля

1 - регулировочный винт; 2 - пружина; 3 - запорный клапан; 4 - шток; 5 - мембрана; 6 - силовая камера; 7 - капиллярная трубка; 8 - термобаллон; Р о - давление в испарителе ХМ; Р k - давление в конденсаторе ХМ; F - сила сжатия пружины; Р c - противодавление, развиваемое термобаллоном.

Организация измерений температуры в помещении рефрижераторного вагона

Местный контроль над температурой в вагоне может осуществляться на стоянках переносной телетермометрической станцией, подключаемой на период измерений к наружной розетке. Дистанционный контроль обеспечивается из служебного вагона с помощью приборов стационарной телетермометрической станции и автоматически путем фиксации на самопишущих регистрирующих устройствах, датчики которых находятся в грузовом помещении вагона.

Классификация приборов измерения температуры

Классификация приборов

Для изменения температур применяются контактные и бесконтактные методы измерения.

Для реализации контактных методов измерения применяются:

    термометры расширения твёрдых и жидких тел (стеклянные, жидкостные, манометрические, биметаллические и дилатометрические);

    термопреобразователи сопротивления (проводниковые и полупроводниковые);

    термоэлектрические преобразователи.

Бесконтактные измерения температуры осуществляются пирометрами (квазимонохроматическими, спектрального отношения и полного излучения.)

Преимущества и недостатки

Контактные методы измерения более просты и точны, чем бесконтактные. Но для измерения температуры необходим непосредственный контакт с измеряемой средой и телом. И в результате этого может возникать, с одной стороны, искажение температуры среды в месте измерения и с другой – несоответствие температуры чувствительного элемента и измеряемой среды.

Бесконтактные методы измерения не оказывают никакого влияния на температуру среды или тело. Но зато они сложнее, и их методические погрешности существенно больше, чем у контактных методов.

Диапазон измерений

Серийно выпускаемые термометры и термопреобразователи охватывают диапазон температур от -260 до 2200°С и кратковременно до 2500°С.

Бесконтактные средства измерения температуры серийно выпускаются на диапазон температур от 20 до 4000°С.

Существуют бесконтактные средства измерения, позволяющие измерять температуру превышающую 4000°С.

Описание приборов измерения

Термометры стеклянные

Принцип действия основан на зависимости объемного расширения жидкости от температуры. Отличаются высокой точностью, простотой устройства и дешевизной. Однако стеклянные термометры хрупки, как правило, неремонтнопригодны, не могут передавать показания на расстояние.

Основными элементами конструкции являются резервуар с припаянным к нему капилляром, заполненные частично термометрической жидкостью, и шкала.

Конструктивно различаются палочные термометры со шкалой, вложенной внутрь стеклянной оболочки. У палочных термометров шкала наносится непосредственно на поверхность толстостенного капилляра. У термометров с вложенной шкалой капилляр и шкальная пластина с нанесенной шкалой заключены в защитную оболочку, припаянную к резервуару.

Стеклянные термометры расширения выпускаются для измерения температур от -100 до 600°С.

Выпускаются также ртутные электроконтактные термометры, предназначенные для сигнализации или поддержания заданной температуры. Термометры выпускаются с заданным постоянным контактом (ТЗК) или с подвижным контактом (ТПК).

Точность показаний термометров зависит от правильности их установки. Важнейшим требованием, предъявляемым при установке, является обеспечение наиболее благоприятных условий притока тепла от измеряемой среды к термобаллону и наименьший отвод тепла от остальной части термометра во внешнюю среду. Большей частью термометры устанавливают в защитную оправу.

Для контроля нагрева электрооборудования применяют четы­ре метода измерений: метод термометра, метод сопротивления, метод термопары и метод инфракрасного излучения.

Метод термометра применяют для измерения температуры до­ступных поверхностей. Используют ртутные, спиртовые и толу­оловые стеклянные термометры, погружаемые в специальные гиль­зы, герметически встроенные в крышки и кожухи оборудования. Ртутные термометры обладают более высокой точностью, но при­менять их в условиях действия электромагнитных полей не реко­мендуется ввиду высокой погрешности, вносимой дополнитель­ным нагревом ртути вихревыми токами.

При необходимости передачи измерительного сигнала на рас­стояние нескольких метров (например, от теплообменника в крыш­ке трансформатора до уровня 2...3 м от земли) используют тер­мометры манометрического типа, например термосигнализаторы ТСМ-10. Прибор состоит из термобаллона и полой трубки, соеди­няющей баллон с пружиной показывающей части прибора. Прибор заполнен жидким метилом и его парами. При изменении измеряе­мой температуры изменяется давление паров хлористого метила, который передается стрелке прибора. Достоинство манометричес­ких приборов заключается в их вибрационной устойчивости.

Метод сопротивления основан на учете изменения величины сопротивления металлического проводника от его температуры.

Для мощных трансформаторов и синхронных компенсаторов применяют термометры с указателем манометрического типа. Об­щий вид (а) и схема включения (б) такого термометра показаны на рис. 3.1. В зависимости от температуры жидкость, заполняющая измерительный щуп прибора, воздействует через соединительную капиллярную трубку и систему рычагов на стрелку указателя.

Рис. 3.1. Дистанционный электротермометр манометрического типа: а - общий вид; б - схема включения; 1 и 2 - сигнальные контакты; 3 - реле

В таком термометре стрелки указателя имеют контакты 1 и 2 для сигнализации температуры, заданной установкой. При замы­кании контактов срабатывает соответствующее реле 3 в схеме сигнализации. Для измерения температуры в отдельных точках синхронных компен­саторов (в пазах для измерения стали, между стержнями обмоток для измере­ния температуры обмоток и других точ­ках) устанавливаются терморезисторы. Сопротивление резисторов зависит от температуры нагрева в точках измерения. Терморезисторы изготовляют из плати­новой или медной проволоки, их сопро­тивления калиброваны при определенных температурах (при температуре О °С для платины сопротивление равно 46 Ом, для меди - 53 Ом; при температуре 100 °С для

платины - 64 Ом, для меди - 75,5 Ом соответственно).

Рис. 3.2. Схема измерения температур с помощью терморезистора

Такой терморезистор R4 включается в плечо моста, собранного из рези­сторов (рис. 3.2). В одну из диагоналей моста включается источник питания, в другую - измерительный прибор. Резисторы R1... R4 в плечах моста подбираются таким образом, что при номинальной температуре мост находится в равновесии и ток в цепи прибора отсутствует. При отклонении температуры в любую сторону от номинальной изменяется сопротивление терморезистора R4, на­рушается баланс моста и стрелка прибора отклоняется, показы­вая температуру измеряемой точки. На этом же принципе основан переносной прибор (рис. 3.3). Перед измерением стрелка прибора должна находиться в нулевом положении.

Рис. 3.3. Электротермометр (переносной) для контроля нагрева контакт­ных соединений:

а - общий вид; б - схема; 1 - муфта для соединения с изолирующей штангой;

2 - микроамперметр; 3 - резистор с регулируемым сопротивлением (R5); 4-

терморезистор (RT); 5 - контроль; 6 - измерение; П - переключатель на два

положения; К - кнопка для подачи напряжения на схему

Для этого кнопкой К подается питание, переключатель П устанавливается в положение 5 и переменным резистором R5 стрелку прибора устанавлива­ют на нуль. Затем переключатель П переводится в положение 6 (измерение).

Измерение температуры контактов производится прикоснове­нием головки датчика к поверхности контакта и нажатием штан­ги на головку электротермометра (при нажатии замыкается кноп­ка К и питание подается в схему). Через 20... 30 с измеренное зна­чение температуры контакта считывается со шкалы прибора.

Средством дистанционного измерения температуры обмотки и стали статора генераторов, синхронных компенсаторов, темпера­туры охлаждающего воздуха, водорода являются термометры со­противления, в которых также использована зависимость величи­ны сопротивления проводника от температуры. Конструкции тер­мометров сопротивления разнообразны. В большинстве случаев - это бифилярно намотанная на плоский изоляционный каркас тон­кая медная проволока, имеющая входное сопротивление 53 Ом при температуре 0 °С.

В качестве измерительной части, работающей в совокупности с термометрами сопротивления, применяют автоматические элек­тронные мосты и логомеры, снабженные температурной шкалой.

Таблица 3.3 Технические характеристики пирометров и тепловизоров

Марка прибора

Диапазон контролируемых температур, °С

Наибольшеерасстояние доконтролируемогообъекта, м

Погрешность измерений, %

Показатель визирования

Напряжение источника питания, В

Тепловизор «Интекс»

Тепловизион-ныеконтрольные системы:

«Иртис-2000»

Таблица 3.4

Охлаждающая среда и контроль за статором, подшипниками, уплотнениями роторов в генераторах ТВФ и ТВВ

Элементы

Число датчиков турбогенератора

турбогенератора

Статор: обмотка

активная сталь

Охлаждающий газ:

холодный

нагретый

Дистиллят в обмотке статора:

на выходе

Вода в охладителях итеплообменниках:

холодная

нагретая

Подшипники иуплотнения:

вкладыши

входящее масло

выходящее масло

Установку термометров сопротивления в статор машины выпол­няют при ее изготовлении на заводе. Медные термометры сопро­тивления укладывают между стержнями обмотки и на дно паза.

Метод термопары основан на использовании термоэлектриче­ского эффекта, т. е. зависимости ЭДС в цепи от температуры точек соединения двух разнородных проводников, например: медь-константан, хромель-копель и др. Если измеряемая температура не превышает 100... 120°С, то между термоЭДС и разностью темпе­ратур нагретых и холодных концов термопары существует про­порциональная зависимость.

Термопары присоединяют к измерительным приборам компен­сационного типа, потенциометрам постоянного тока и автомати­ческим потенциометрам, которые предварительно градуируют. С помощью термопар измеряют температуры конструктивных эле­ментов турбогенераторов, охлаждающего газа, активных частей, например активной стали статора.

Метод инфракрасного излучения положен в основу приборов, работающих с использованием фиксации инфракрасного излуче­ния, испускаемого нагретыми поверхностями. К ним относятся пирометры, применяемые для измерения температур нагретых тел (табл. 3.3).

В табл. 3.4 приведены элементы турбогенераторов серий ТВФ и ТВВ и охлаждающая среда, температура которых измеряется ука­занными средствами теплового контроля.

Помимо температуры на обслуживаемом оборудовании также контролируют давление водорода, общий расход и давление дис­тиллята в обмотке статора, расход и давление воды в охладителях и теплообменниках, так как от параметров охлаждающих агентов не­посредственно зависит температура элементов статора и ротора.

Совокупность приёмов использования принципов и средств изме-

рений составляет метод измерения. Различные методы измерений

отличаются прежде всего организацией сравнения измеряемой вели-

чины с единицей измерения. С этой точки зрения все методы измере-

ний в соответствии с ГОСТ 16263–70 подразделяются на две группы:

методы непосредственной оценки и методы сравнения. Методы срав-

нения в свою очередь включают в себя метод противопоставления,

дифференциальный метод, нулевой метод, метод замещения и метод

совпадений.

При методе непосредственной оценки значение измеряемой ве-

личины определяют непосредственно по отсчётному устройству изме-

рительного прибора прямого действия (измерительный прибор, в ко-

тором предусмотрено одно или несколько преобразований сигнала

измерительной информации в одном направлении, т.е. без обратной

связи). На этом методе основаны все показывающие (стрелочные)

приборы (вольтметры, амперметры, ваттметры, счётчики электриче-

ской энергии, термометры, тахометры и т.п.). Следует отметить, что

при использовании данного метода измерений мера как вещественное

воспроизведение единицы измерения, как правило, непосредственно в

процессе измерения не участвует. Сравнение измеряемой величины с

единицей измерения осуществляется косвенно путём предварительной

градуировки измерительного прибора с помощью образцовых мер или

образцовых измерительных приборов. 22

Точность измерений по методу непосредственной оценки в боль-

шинстве случаев невелика и ограничивается точностью применяемых

измерительных приборов.

Метод сравнения с мерой – это такой метод измерений, в кото-

ром измеряемую величину сравнивают с величиной, воспроизводимой

мерой. Примеры этого метода: измерение массы на рычажных весах с

уравновешиванием гирями; измерение напряжения постоянного тока

на компенсаторе сравнением с ЭДС нормального элемента.

Метод сравнения с мерой, в котором измеряемая величина и ве-

личина, воспроизводимая мерой, одновременно воздействуют на при-

бор сравнения, с помощью которого устанавливается соотношение

между этими величинами, называется методом противопоставления.

Это, например, измерение массы на рычажных весах с помещением её

и уравновешивающих гирь на две чаши весов при известном соотно-

шении плеч рычага весов. В этом случае при качественном выполне-

нии устройства сравнения (малое трение в опорах, стабильность соот-

ношения плеч рычага и т.п.) может быть достигнута высокая точность

измерений (пример – аналитические весы).

Дифференциальный метод – это метод сравнения с мерой, в ко-

тором на измерительный прибор воздействует разность измеряемой

величины и известной величины, воспроизводимой мерой. Этот метод

позволяет получать результаты измерений с высокой точностью даже

в случае применения относительно неточных измерительных прибо-

ров, если с большой точностью воспроизводится известная величина.

Рассмотрим следующий пример. Необходимо измерить постоян-

ное напряжение, истинное значение которого равно Ux = 99,0 В.

В распоряжении экспериментатора имеется набор вольтметров (или

один многопредельный) с пределами измерения 0,01; 0,1; 1 В. Пусть

погрешность каждого вольтметра при измерении величины, значение

которой равно пределу измерения, составляет 1%. Предположим, что

имеется также образцовая мера напряжения U0 =1В, погрешность

которой пренебрежимо мала. Очевидно, что, производя измерения ме-

тодом непосредственной оценки, экспериментатор использует вольт-

метр с пределом измерения 1 В и получает результат измерений с по-

грешностью 1%. При дифференциальном методе измерения экспери-

ментатор включает источники измеряемого постоянного напряжения

Ux и образцового напряжения U0 последовательно и встречно и изме-

ряет их разность U0 −Ux = 01,0 В вольтметром с пределом измерения

0,01 В. В этом случае разность U0 −Ux будет измерена с погрешно-

стью 1%, а, следовательно, значение напряжения будет определено с

погрешностью 0,01%. 23

Указанный метод широко используется, в частности, при поверке

средств измерений (например, измерительных трансформаторов тока и

напряжения). На нём основана работа очень распространённых в элек-

троизмерительной технике мостов постоянного и переменного токов.

Эффект повышения точности результатов измерений, достигае-

мый при дифференциальном методе, оказывается тем значительнее,

чем ближе значение меры к истинному значению измеряемой величи-

ны. В том случае, когда результирующий эффект воздействия величин

на прибор сравнения доводят до нуля, дифференциальный метод изме-

рений превращается в нулевой. Очевидно, что в нулевом методе изме-

рений используемая мера должна быть изменяемой (регулируемой), а

прибор сравнения выполняет функции индикатора равенства нулю

результирующего воздействия измеряемой величины и меры.

Нулевой метод позволяет получить высокие точности измерений

и широко используется, например, при измерениях электрического

сопротивления мостом с полным его уравновешиванием или постоян-

ного напряжения компенсатором постоянного тока.

Методом замещения называется метод сравнения с мерой, в ко-

тором измеряемую величину замещают известной величиной, воспро-

изводимой мерой. Это, например, взвешивание с поочередным поме-

щением измеряемой массы и гирь на одну и ту же чашку весов. Метод

замещения можно рассматривать как разновидность дифференциаль-

ного или нулевого метода, отличающуюся тем, что сравнение изме-

ряемой величины с мерой производится разновременно.

Метод совпадений – это метод сравнения с мерой, в котором

разность между измеряемой величиной и величиной, воспроизводимой

мерой, измеряют, используя совпадения отметок шкал или периодиче-

ских сигналов. Примерами этого метода являются измерения длины с

помощью штангенциркуля с нониусом, измерение частоты вращения

стробоскопом.

Описанные выше различия в методах сравнения измеряемой ве-

личины с мерой находят своё отражение и в принципах построения

измерительных приборов.

С этой точки зрения различают измерительные приборы прямого

действия и приборы сравнения. В измерительном приборе прямого

действия предусмотрено одно или несколько преобразований сигнала

измерительной информации в одном направлении, т.е. без применения

обратной связи. Так, например, на рис. 1.3 приведена структура элек-

тронного вольтметра переменного и постоянного тока, которая содер-

жит выпрямитель В, усилитель постоянного тока УПТ и измеритель-

ный механизм ИМ. В этом приборе преобразование сигнала измери-

тельной информации идёт только в одном направлении. 24

Характерной особенностью приборов прямого действия является

потребление энергии от объекта измерения. Однако это не исключает

возможности применения приборов прямого действия для измерения,

например, электрического сопротивления или ёмкости, но для этого

необходимо использовать вспомогательный источник энергии.

Измерительный прибор сравнения предназначен для непосредст-

венного сравнения измеряемой величины с величиной, значение кото-

рой известно.

На рисунке 1.4 приведена структурная схема автоматического

прибора сравнения, содержащая устройство сравнения УС, устройство

управления УУ и изменяемую (регулируемую) меру М с отсчётным

устройством.

Измеряемая величина x и однородная с ней величина x0 подаются

на входы устройства сравнения УС. Величина x0 получается от регули-

руемой меры М. В зависимости от результата сравнения х с х0 устрой-

ство управления УУ воздействует на меру М таким образом, чтобы

величина

x − x уменьшалась. Процесс уравновешивания заканчива-

ется, когда x = x

При этом значение измеряемой величины отсчиты-

вается по шкале регулируемой меры. Если в устройстве сравнения

происходит вычитание величин х и x0, то в данном приборе реализует-

ся сравнение измеряемой величины с мерой нулевым методом.

Очевидно, что любой измерительный прибор сравнения должен

иметь цепь обратной связи и замкнутую структуру. Обратная связь

может применяться и в приборах прямого действия, однако в них она

всегда охватывает не весь процесс преобразования, а только его часть.

Например, в структурной схеме на рис. 1.3 усилитель постоянного то-

ка может быть охвачен обратной связью. В измерительных приборах

сравнения в цепи обратной связи всегда формируется физическая ве-

личина, однородная с измеряемой, которая подаётся на вход прибора.

Следует отметить, что сравнение измеряемой величины с мерой в

приборах сравнения может осуществляться либо одновременно (нуле-

вой метод), либо разновременно (метод замещения).

Рис. 1.3. Структурная схема

прибора прямого действия

Рис. 1.4. Структурная схема

прибора сравнения25

Таким образом, приведённая классификация видов и методов из-

мерений позволяет не только систематизировать разнообразные изме-

рения всевозможных физических величин и тем самым облегчить под-

ход к решению конкретной измерительной задачи, но и с общих пози-

ций подойти к рассмотрению структур и принципов действия различ-

ных измерительных приборов.

В зависимости от вида объекта контроля может быть контроль

продукции, услуг, систем качества (производств) и персонала. Все

объекты контролируются на соответствие требованиям норм, установ-

ленным на сырьё, материалы, изделия, оборудование и инструмент.

Одной из важнейших характеристик объектов контроля является их

контролепригодность, т.е. свойство конструкции изделия, обеспечи-

вающее возможность, удобство и надёжность её контроля при изго-

товлении, испытании, техническом обслуживании и ремонте.

Кроме названных объектов, контролю подвергаются элементы

системы качества и стадии процесса производства. Контроль после

какой-либо операции на станке, прессе, сборке называется операцион-

ным. После изготовления детали, узла или изделия в качестве готовой

продукции применяют приёмочный контроль: проводится контроль

комплектности, упаковки и транспортирования и, наконец, контроль

хранения. Какие параметры подлежат контролю и каким инструмен-

том или прибором контролируется объект при операционном контро-

ле, регламентируется картой технологического процесса в графе «кон-

трольная операция». Приёмочный контроль проводят по нормативно-

технической документации (НТД), общим техническим условиям и

соответствующим техническим условиям.

Проверка соответствия характеристик, режимов и других показа-

телей названных стадий производства и составляет суть контролируе-

мых операций.

Контроль объектов или стадий процесса производства может

− летучим − срок проведения его не регламентирован;

− периодическим − проводится через определённый промежуток

времени (часы, сутки, месяцы);

− непрерывным – ведётся непрерывно (постоянно).

В зависимости от средств контроля различают контроль:

− визуальный − когда объект контроля подвергается осмотру и

определяется его соответствие требованиям НТД (все ли операции

выполнены, наличие маркировки, сопроводительной документации); 26

− органолептический – субъективный метод контроля, проводи-

мый специалистами-экспертами (оценка в баллах);

− инструментальный – контроль, осуществляемый при помощи

измерительного инструмента, калибров, приборов, стендов, испыта-

тельных машин и др.

Последний вид контроля может быть ручным, автоматизирован-

ным и автоматическим. При ручном контроле используется ручной

измерительный инструмент (штангенциркули, микрометры, калибры,

скобы, индикаторы и т.д.) для проверки деталей и изделий. Данный

контроль весьма субъективен: даже при сплошном контроле вручную

обнаруживается лишь 2 … 4% дефектных деталей. Автоматизирован-

ный контроль связан с использованием специальных средств, позво-

ляющих исключить субъективизм при измерении. Наиболее прогрес-

сивным является автоматический контроль, т.е. при изготовлении

деталей и узлов встраиваются автоматические средства контроля, с

помощью которых осуществляют непрерывный контроль.

В зависимости от объёма продукции различают контроль:

− сплошной, при котором решение о качестве контролируемой

продукции принимается по результатам проверки каждой единицы

продукции;

− выборочный, при котором решение о качестве принимается по

результатам проверки одной или нескольких выборок (в зависимости

от требований НТД) из партии или потока продукции.

По характеру воздействия на ход производственного процесса

различают активный и пассивный контроль. При активном контроле

(он осуществляется приборами, встроенными в технологическое обо-

рудование) полученные результаты используются для непрерывного

управления процессом изготовления изделий. Пассивный контроль

лишь фиксирует полученный результат и является основанием для

разбраковки продукции.

По характеру воздействия на объект контроль может быть разру-

шающим, при котором продукция становится непригодной для даль-

нейшего использования по назначению, и неразрушающим.

По типу проверяемых параметров выделяют контроль геометри-

ческих параметров (линейные, угловые размеры, форма и расположе-

ние поверхностей, осей, деталей, узлов и агрегатов и т.д.), физических

свойств (электрические, теплотехнические, оптические и др.), механи-

ческих свойств (прочность, твёрдость, пластичность при различных

внешних условиях), микро- и макроструктур (металлографические

исследования), химических свойств (химический анализ состава веще-

ства, химическая стойкость в различных средах), а также специальный

контроль (свето-, газонепроницаемость, герметичность). 27

Для определения значения температуры какого-либо тела необходимо выбрать эталон температуры, то есть тело, которое при определённых условиях, равновесных и достаточно легко воспроизводимых, имело бы определённое значение температуры. Это значение температуры является реперной точкой соответствующей шкалы температур - упорядоченной последовательности значений температуры, позволяющей количественно определять температуру того или иного тела. Температурная шкала позволяет косвенным образом определять температуру тела путем прямого измерения какого-либо его физического параметра, зависящего от температуры.

Наиболее часто при получении шкалы температур используются свойства вода. Точки таяния льда и кипения воды при нормальном атмосферном давлении выбраны в качестве реперных точек в современных (но не обязательно изначальных) температурных шкалах, предложенных Андерсом Цельсием (1701 - 1744), Рене Антуаном Фершо Реомюром (1683 - 1757), Даниэлем Габриэлем Фаренгейтом (1686 - 1736). Последний создал первые практически пригодные спиртовой и ртутный термометры, широко используемые до сих пор. Температурные шкалы Реомюра и Фаренгейта применяют в настоящее время в США, Великобритании и некоторых других странах.

Введенную в 1742 году температурную шкалу Цельсия, который предложил температурный интервал между температурами таяния льда и кипения воды при нормальном давлении (1 атм или 101 325 Па) разделить на сто равных частей (градусов Цельсия), широко используют и сегодня, правда в уточненном виде, когда один градус Цельсия считается равным одному кельвину (см. ниже). При этом температура таяния льда берется равной 0 oC, а температура кипения воды становится приблизительно равной 99,975 oC. Возникающие при этом поправки, как правило, не имеют существенного значения, так как большинство используемых спиртовых, ртутных и электронных термометров не обладают достаточной точностью (поскольку в этом обычно нет необходимости). Это позволяет не учитывать указанные, очень небольшие поправки.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала - термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Эта температурная шкала подробно рассмотрена в третьей главе. Отметим только, что единицей измерения температуры в этой температурной шкале является один кельвин (1 К), одна из семи основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина) (1824 - 1907), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала - международная практическая. Эта шкала имеет 11 реперных точек - температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина - легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Тело, с помощью измерения термометрического признака которого осуществляется измерение температуры, называется термометрическим телом.

Термометрическими признаками могут быть изменения: объёма газа или жидкости, электрического сопротивления тел, разности электрического потенциала на границе раздела двух проводящих тел и т.д. Соответствующие этим признакам приборы для измерения температуры (термометры) будут: газовый и ртутный термометры, термометры, использующие в качестве датчика термосопротивление или термопару.

Приводя термометрическое тело (датчик термометра) в состояние теплового контакта с тем телом, температуру которого необходимо измерить, можно на основании нулевого начала термодинамики утверждать, что по прошествии времени, достаточного для установления термодинамического равновесия, их температуры сравняются. Это позволяет приписать телу то же значение температуры, которое показывает термометр.

Другой метод измерения температуры реализован в пирометрах - приборах для измерения яркостной температуры тел по интенсивности их теплового излучения. При этом достигается равновесное состояние термодинамической системы, состоящей из самого пирометра и теплового излучения, принимаемого им. Подробнее это явление рассмотрено в разделе курса, посвящённом квантовым свойствам равновесного теплового излучения. Сейчас мы только отметим, что оптическая пирометрия (бесконтактные методы измерения температур) используется в металлургии для измерения температуры расплава и проката, в лабораторных и производственных процессах, где необходимо измерение температуры нагретых газов, а также при исследованиях плазмы.

Первый термометр был изобретён Галилео Галилеем (1564 - 1642) и представлял собой газовый термометр.

Газовый термометр постоянного объёма состоит из термометрического тела - порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, - давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.

Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра - хорошо совпадает с абсолютной шкалой температур (о ней подробно будет сказано ниже). Во второй главе мы подробнее опишем идеально-газовый термометр, определяющий абсолютную шкалу температур.

Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.

Жидкостной термометр - это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия. При высоких температурах (свыше 300 oC) в капилляр накачивают азот (давление до 100 атм или 107 Па), чтобы воспрепятствовать кипению ртути. Применение в жидкостном термометре вместо ртути таллия позволяет существенно понизить нижнюю границу измерения температуры до -59 oC.

Другими видами широко распространённых жидкостных термометров являются спиртовой (от -80 oC до +80 oC) и пентановый (от -200 oC до +35 oC). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.

С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.

В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела - металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (~20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.

В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.

Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.

Другой принцип измерения температуры реализован в термопарах. Термопара представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (свободный спай) - при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а, следовательно, температуру измерительного спая.

В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком - возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий-платина.

Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.

В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png