К метательным взрывчатым веществам относятся пороха и твердое ракетное топливо. Основной формой их взрывчатого превращения является горение. Пороха - это вещества способные к закономерному горению параллельными слоями без доступа кислорода извне, при этом горение происходит не переходя в детонацию в условиях выстрела.

Пороха делятся на дымные и бездымные.

Дымный порох применяется для изготовления вышибных зарядов в осколочных (выпрыгивающих) и в сигнальных минах, для изготовления огнепроводного шнура и воспламенителей реактивных зарядов, запалов к ручным гранатам, дистанционных трубок взрывателей, снаряжения охотничьих боеприпасов, изготовления петард и другой пиротехнической продукции. Состав пороха представляет собой механическую смесь калиевой селитры (75 %), древесного угля (15 %) и серы (10 %). Зерна пороха имеют черный или слегка коричневый цвет зерен с блестящей поверхностью. В зависимости от величины зерен порох делится на мелкозернистый и крупнозернистый. Дымный порох сильно гигроскопичен, под действием влаги отсыревает и при влажности свыше 2 % становится непригодным для применения. Высушенный (после отсыревания) порох имеет пониженные качества. При хранении и применении дымного пороха вследствие высокой способности его к воспламенению необходимо соблюдать особые меры предосторожности.

Рис. 1. Формы зерен бездымного пороха (пластинки, лента, трубка, цилиндр с семью каналами)

Бездымные пороха подразделяются: на пироксилиновые, баллистит- ные и кордитные. Применяются для изготовления зарядов к огнестрельному оружию: пироксилиновые пороха главным образом в патронах стрелкового оружия, баллиститные, как более мощные используются в различных артиллерийских боеприпасах, а также реактивных установках (твердые реактивные топлива). В ряде случаев пороха применяются (в виде внутренних зарядов) для производства подрывных работ. Детонация пороховых зарядов происходит в том случае, если инициирование их осуществляется достаточно мощным промежуточным детонатором.

Форма зерен бездымного пороха используемого в боеприпасах может быть различной: шарообразной, пластинчатой, ленточной, одноканальной или многоканальной трубчатой, кубической или цилиндрической с внутренними каналами или без них.

В бездымные пороха могут добавляться стабилизаторы - для предохранения от химического разложения при длительном хранении; флегма- тизаторы - для замедления скорости горения внешней поверхности зерен пороха; графит - для достижения сыпучести и устранения слипания зерен.

Еще по теме Метательные взрывчатые вещества:

  1. 56. Незаконный оборот оружия: характеристика признаков преступлений. Хищение либо вымогательство оружия, боеприпасов, взрывчатых веществ, взрывных устройств.
  2. 6. Преступления, посягающие на установленный порядок внешнеэкономической деятельности
  3. 4. Преступления, нарушающие общие правила безопасности. Характеристика отдельных видов преступлений против общественной безопасности

2.6 Классификация взрывчатых веществ

Все взрывчатые вещества можно разделить на следующие группы:

группа I – инициирующие (первичные) взрывчатые вещества;

группа II – бризантные, или дробящие (вторичные) взрывчатые вещества;

группа III – метательные ВВ, или пороха.

Основными признаками для разделения ВВ на группы являются: характерный для каждой из них режим взрывного превращения (горение или детонация) и условия его возбуждения.

Группа I инициирующие (первичные) ВВ. Эти ВВ часто называют первичными потому, что они служат для возбуждения детонации бризантных ВВ, называемых вторичными, и для воспламенения метательных ВВ.

Характерным видом взрывного превращения веществ этой группы является детонация. Они легко взрываются от простых видов внешнего воздействия – пламени, удара, накола, трения. Горение инициирующих ВВ (ИВВ) неустойчиво даже при атмосферном давлении, и при поджигании их практически мгновенно возникает детонация.

Важнейшими представителями инициирующих веществ явля-ются:

    гремучая ртуть;

    азид свинца;

    тринитрорезорцинат свинца, или ТНРС;

    тетразен.

Группа II бризантные, или дробящие ВВ. Характерным видом взрывного превращения ВВ этой группы является детонация; они способны и гореть, но при некоторых условиях горение может стать неустойчивым и перейти во взрыв или в детонацию.

Бризантные ВВ применяют главным образом для снаряжения боеприпасов и для взрывных работ.

По химической природе и составу бризантные ВВ можно разделить на три класса:

Первый класс азотнокислые эфиры или нитраты спиртов или углеводов (нитроэфиры).

Азотнокислые эфиры углеводов . Главным представителем этих ВВ являются нитраты целлюлозы (нитроцеллюлозы), которые в зависимости от содержания азота делят на две разновидности: пироксилины и коллоксилины.

Азотнокислые эфиры спиртов . Характерными представителями являются:

а) нитроглицерин;

б) динитродигликоль;

Второй класс нитросоединения . Они представляют собой важнейший класс бризантных ВВ. К ним относятся:

а) тринитротолуол, или тротил;

б) тринитроксилол, или ксилил;

в) тринитрофенол, или пикриновая кислота;

г) тетрил;

д) гексоген;

е) октоген.

Значительное применение нашли сплавы нитросоединений, например, тротила с динитронафталином, гексогеном или ксилилом, и механические смеси некоторых нитросоединений или их сплавов с другими веществами, или порошкообразным алюминием.

Третий класс взрывчатые смеси с окислителями , представляющие собой смеси окислителя со взрывчатым веществом или горючим.

Группа III метательные ВВ, или пороха . Для веществ этой группы характерным видом взрывного превращения является горение, не переходящее в детонацию даже при высоких давлениях, развивающихся в условиях выстрела; эти вещества пригодны для сообщения пуле или снаряду движения в канале ствола оружия и для сообщения движения ракетным снарядам.

Для возбуждения горения необходимо действие пламени. По физико-химической структуре метательные ВВ можно разделить на два класса: нитроцеллюлозные пороха и твердые ракетные топлива.

Нитроцеллюлозные пороха – это метательные ВВ, основой которых являются нитраты целлюлозы, пластифицированные каким-либо растворителем.

Твердые смесевые и пиротехнические топлива изготавливаются в виде смесей окислителей, горючих и связующих веществ (поли-меров).

2.6.1 Инициирующие взрывчатые вещества

Инициирующие ВВ (ИВВ) отличаются от других групп ВВ тем, что они горят неустойчиво, и при поджигании их горение практически мгновенно переходит в детонацию.

Было установлено, что даже при малых давлениях ИВВ горят с большой скоростью, которая резко возрастает с увеличением давления до значений, при которых горение становится неустойчивым.

ИВВ характеризуются большой скоростью полного сгорания, что обусловливает достижение высокой температуры продуктов сгорания; вследствие этого новые слои ИВВ легко воспламеняются, и повышается массовая скорость горения.

Повышение массовой скорости горения в указанных случаях приводит к неустойчивому горению и, следовательно, к быстрому переходу в детонацию. Нарастание скорости детонации можно характеризовать также толщиной слоя ВВ, при прохождении которого достигается предельная (устойчивая) скорость детонации. Толщину этого слоя ВВ называют участком разгона детонации.

Для инициирующих ВВ характерно малое время нарастания и, соответственно, короткий участок разгона скорости детонации. Помимо короткого участка разгона, инициирующие ВВ должны обладать бризантностью, достаточной для возбуждения детонации вторичных взрывчатых веществ.

Известно очень большое число инициирующих ВВ, однако лишь некоторые из них нашли практическое применение. Ниже будут рассмотрены важнейшие из этих веществ: гремучая ртуть, азид свинца, тринитрорезорцинат свинца, тетразен и диазодинитрофенол.

Гремучую ртуть Н g N С) 2 получают растворением металлической ртути в азотной кислоте и добавлением полученного раствора к этиловому спирту. Гремучая ртуть – белый или серый кристаллический порошок. Вода уменьшает чувствительность гремучей ртути к механическим воздействиям и другим видам начального импульса. При содержании воды в количестве 30 % она не загорается от луча огня. В связи с этим гремучую ртуть обычно хранят под водой.

Гремучую ртуть применяют для изготовления ударных и накольных составов, для снаряжения капсюлей-воспламенителей и капсюлей-детонаторов. Ввиду высокой чувствительности гремучую ртуть, как и другие инициирующие ВВ, перевозят только в виде готовых изделий (капсюлей).

Азид свинца получают реакцией обменного разложения азида натрия с азотнокислым свинцом, смешивая водные растворы этих солей.

Азид свинца осаждается в виде мелкокристаллического, несыпучего и потому не пригодного для снаряжения (дозировки) порошка. Поэтому в азид свинца вводят небольшое количество парафина, декстрина или другого склеивающего вещества (которое одновременно является флегматизатором) и гранулируют. Гранулы сушат и сортируют для удаления крупных комков и пыли.

Азид свинца недостаточно чувствителен к лучу пламени и наколу. Чтобы обеспечить безотказную детонацию от накола жала или луча пламени в азидных капсюлях-детонаторах, поверх слоя азида свинца запрессовывают специальные, воспламенительные составы, более чувствительные к соответствующему импульсу.

По сравнению с гремучей ртутью азид свинца имеет ряд важных преимуществ:

1) его инициирующее действие значительно больше, поэтому количество азида свинца в капсюлях-детонаторах в 2–2,5 раза меньше, чем количество гремучей ртути;

2) он менее чувствителен к сотрясениям, что особенно важно для применения в артиллерийских капсюлях-детонаторах;

3) для получения азида свинца не нужны дефицитные или дорогие материалы, тогда как для производства гремучей ртути требуется дорогая ртуть.

Тринитрорезорцинат свинца, или ТНРС, получают при взаимодействии натриевой соли стифииновой кислоты с азотнокислым свинцом в водном растворе. Чувствителен к пламени; при воспламенении дает мощный луч огня. Чувствительность к удару меньше, чем у азида свинца. Применяется для воспламенения азида свинца в капсюлях-детонаторах, а также в ударных составах для снаряжения капсюлей-воспламенителей.

Тетразен представляет собой мелкокристаллический порошок с желтоватым отливом. Бризантность тетразена мала; он не обладает достаточной инициирующей способностью для возбуждения детонации вторичных ВВ. По чувствительности к трению и удару близок к гремучей ртути. Добавление 2…3 % тетразена к азиду свинца резко повышает чувствительность последнего к наколу. Тетразен применяют также в смеси с ТНРС в ударных составах капсюлей-воспламенителей и накольных составах капсюлей-детонаторов. Он играет здесь роль сенсибилизатора ТНРС. Тетразен применяют для изготовления некорродирующих составов некоторых патронных капсюлей-воспламе-нителей.

2.6.2 Бризантные взрывчатые вещества

Для снаряжения боеприпасов (снарядов, мин, авиабомб) применяют бризантные ВВ. В зависимости от назначения боеприпасов устанавливают требования к фугасности и бризантности ВВ. Требования в отношении чувствительности ВВ к механическим воздействиям устанавливаются в зависимости от условий служебного применения и действия боеприпасов у цели.

В качестве характеристики степени механического воздействия на разрывной заряд принято напряжение, развивающееся в опасном сечении разрывного заряда при выстреле или пробивании брони.

2.6.2.1 Азотнокислые эфиры (нитраты)

Нитроглицерин. Для получения нитроглицерина глицерин обрабатывают смесью серной и азотной кислот. После отделения нитроглицерина от кислот его промывают до нейтральной реакции для получения химически стойкого продукта. Нитроглицерин представляет собой маслообразную прозрачную жидкость. Чувствительность нитроглицерина к удару высока – он дает взрывы при падении груза массой
2 кг с высоты 4 см.

Нитроглицерин применяют для приготовления нитроглицериновых порохов и взрывчатых веществ, например, динамитов. Нитроглицериновые взрывчатые вещества непригодны для снаряжения боеприпасов из-за большой чувствительности к удару и трению.

ТЭН. Со времени второй мировой войны заметное значение приобрел азотнокислый эфир пентаэритрита – пентаэритрит – тетранитрат, или ТЭН.

ТЭН получают нитрованием четырехатомного спирта пентаэритрита. ТЭН по сравнению с другими азотнокислыми эфирами химически стоек. Он более чувствителен к удару, чем тротил, тетрил и даже гексоген (дает взрывы при падении груза массой 2 кг с высоты 30 см, а при массе груза 10 кг и высоте его падения 25 см взрывы происходят в 100 % опытов). Чувствительность ТЭНа к детонации несколько выше таковой гексогена и других вторичных ВВ.

Чистый ТЭН применяют в качестве вторичных зарядов для снаряжения капсюлей-детонаторов, а флегматизированный – для снаряжения детонирующего шнура, детонаторов, кумулятивных и некоторых других снарядов.

2.6.2.2 Нитросоединения

Нитросоединения представляют собой важнейший класс бризантных взрывчатых веществ; многие представители этого класса характеризуются значительным фугасным и бризантным действием при малой чувствительности к механическим воздействиям по сравнению со взрывчатыми веществами других классов.

Исходными веществами для производства нитросоединений ароматического ряда служат ароматические углеводороды и их производные: бензол С 6 Н 6 , толуол С 6 Н 5 СН 3 , ксилол С 6 Н 4 (СН 3) 2 , нафталин, фенол С 6 Н 5 ОН, диметиланилин С 6 Н 5 (СН 3) 2 и др.

Эти вещества получают из побочных продуктов коксования каменного угля: коксового газа и смолы. В настоящее время большие количества ароматических углеводородов (бензола, ксилола и, главным образом, толуола) получают при каталитическом крекинге и риформинге нефти. Фенол и другие производные ароматических углеводородов получают при дальнейшей химической переработке этих веществ.

Для получения нитросоединений действуют на углеводороды или их производные смесью азотной и серной кислот.

Тротил. Важнейшим представителем класса нитросоединений является тринитротолуол, или тротил. Температура затвердевания химически чистого тринитротолуола 80,85°С. Температура затвердевания технического продукта является критерием его чистоты.

Тринитротолуол практически не взаимодействует с металлами. Чувствительность тринитротолуола к механическим воздействиям и, в частности к удару, сравнительно невелика, что является основным его преимуществом перед многими другими нитросоединениями. При испытании на копре (груз 10 кг, высота падения 25 см) тротил дает от 4 до 8 % взрывов, а тетрил, например, около 50 %.

Применение тротила. Тротил является основным бризантным взрывчатым веществом для снаряжения боеприпасов. Благодаря сравнительно малой чувствительности к механическим воздействиям при удовлетворительном бризантном и фугасном действии, тротил является пока наилучшим взрывчатым веществом для снарядов к морским и береговым орудиям. Для снаряжения бронебойных снарядов к этим орудиям применяли флегматизированный тротил, состоявший из 94 % тротила, 4 % нафталина и 2 % динитробензола, но возможно применение и чистого тротила.

Тротил применяли в значительных количествах в сплавах с другими нитросоединениями: с гексогеном для снаряжения кумулятивных снарядов и снарядов малого калибра. Тротил применяли в военное время в смесях с аммиачной селитрой. Из тротила готовят также патроны и шашки для взрывных работ.

Гексоген. Гексоген и ранее описанный ТЭН относятся к числу сильнейших и наиболее бризантных ВВ. Для уменьшения чувствительности гексогена к удару и трению его флегматизируют парафином, воском, церезином и другими веществами, а также ди- и тринитротолуолом и другими нитросоединениями.

Вследствие высокой чувствительности чистого ВВ к механическим воздействиям для прессования применяют только флегматизированный гексоген. В таком виде из него прессуют заряды детонаторов, кумулятивных и мелкокалиберных снарядов.

Применение гексогена. Чистый гексоген аналогично ТЭНу применяют только для изготовления капсюлей-детонаторов. Значительное применение находит гексоген в виде сплавов с другими нитросоединениями, например с тротилом, для снаряжения различных боеприпасов. Такие смеси менее чувствительны, чем гексоген, и обладают большей мощностью, чем тротил.

Октоген получают при взаимодействии уротропина с азотной кислотой и нитратом аммония в среде уксусной кислоты и уксусного ангидрида. Температура плавления, термостойкость значительно выше, чем у гексогена. Чувствительность к удару – 50 % взрывов при падении груза массой 5 кг с высоты 42 см.

Октоген применяют как термостойкое ВВ при бурении глубинных скважин и дроблении взрывным методом горячих слитков, при разгрузке и ремонте доменных печей. Его применяют в военных объектах как в виде самостоятельных зарядов, так и смеси с тротилом (октол), применяют также в твердых ракетных топливах и артиллерийских порохах.

2.6.3 Взрывчатые смеси, содержащие окислители

Аммиачно-селитренные ВВ. Аммиачно-селитренными взрывчатыми веществами (сокращенно АСВВ) называют взрывчатые смеси, основной составной частью которых является аммиачная селитра.

Окислителем в АСВВ является аммиачная селитра, а горючим – различные вещества как взрывчатые (тротил, ксилил и другие нитросоединения), так и невзрывчатые (древесная или другая органическая мука и т.д.). В состав отдельных АСВВ входят и некоторые специальные добавки, например, хлористый натрий в АСВВ для угольных шахт, опасных по газу или пыли.

АСВВ, в состав которых входят взрывчатые нитросоединения, называют аммонитами. АСВВ, содержащие, кроме аммиачной селитры, невзрывчатые горючие материалы, называют динамонами. АСВВ, в состав которого входит алюминий, называют аммоналом.

По сравнению с другими взрывчатыми смесями АСВВ характеризуются пониженной чувствительностью к механическим воздействиям; вследствие этого, а также низкой стоимости, удовлетворительного фугасного и бризантного действия их широко применяли для снаряжения многих видов боеприпасов; по тем же причинам они находят широкое, а в России – почти исключительное применение для промышленных взрывных работ.

2.6.4 Метательные ВВ

2.6.4.1 Дымный порох

Состав и компоненты дымного пороха. Средний состав дымного пороха: 75 % селитры (большей частью калиевой), 15 % угля, 10 % серы.

Калиевая селитра малогигроскопична; это важное качество обеспечивает физическую стойкость (отсутствие увлажняемости) изготовленного из нее пороха. Температура плавления 334°С.

Натриевая селитра непригодна для изготовления военных порохов вследствие ее большой гигроскопичности.

Сера – твердое кристаллическое вещество светло-желтого цвета, нерастворимое в воде, температура плавления 114,5°С.

Уголь для производства пороха применяют древесный из мягких пород дерева, чаще крушинный или ольховый. Большое значение для качества угля имеет метод его приготовления, в первую очередь, степень обжига. В настоящее время применяют преимущественно уголь с содержанием углерода от 74 до 78 %.

О механизме взрывного превращения дымного пороха . Реакция между твердыми веществами протекает очень медленно. Исследование Боудена показало, что в начальной стадии процесса воспламенения дымного пороха происходит расплавление серы. Возникающий при этом тесный контакт жидкой серы с азотнокислым калием и органическими веществами, содержащимися в угле, приводит к увеличению скорости реакции до значений, характерных для взрывного превращения. При достижении нормальной скорости горения пороха выделяется количество теплоты, при котором становится возможным непосредственное окисление углерода азотнокислым калием.

Более трудная зажигаемость бессерного пороха объясняется тем, что жидкая фаза в таком порохе может возникнуть только при условии расплавления более высокоплавкой селитры (температура плавления калиевой селитры 334°С).

Свойства дымного пороха. Дымный порох имеет аспидно-серый цвет и матовый глянец, большие зерна часто бывают от сине-черного до серо-черного цвета с металлическим блеском. По чувствительности к удару дымный порох относится к числу безопасных в обращении ВВ (отказ – при падении груза в 10 кг с высоты 35 см, взрывы при высоте падения груза 45 см).

Чувствительность дымного пороха к пламени и даже к незначительной искре, возникшей при ударе между металлическими предметами, является причиной большой опасности при обращении с ним.

Применение дымного пороха. В настоящее время дымные пороха применяют:

а) для снаряжения дистанционных трубок (трубочные пороха);

б) для изготовления столбиков, служащих для передачи огня вышибному заряду в шрапнелях;

в) в качестве вышибного заряда в шрапнелях, зажигательных и осветительных снарядах;

г) для изготовления замедлителей и усилителей луча пламени в трубках и взрывателях;

д) для изготовления пороховых лепешек в капсюльных втулках;

е) для изготовления воспламенителей зарядов из нитроцеллюлозных порохов и пиротехнических изделий;

ж) для изготовления огнепроводного шнура.

Кроме того, дымный порох применяют в охотничьем оружии и для некоторых видов горных работ (добыча штучного камня).

2.6.4.2 Нитроцеллюлозные пороха

Характерным видом взрывного превращения порохов является горение, не переходящее в детонацию в условиях выстрела. Известно, что скорость горения пороха увеличивается с повышением давления. Тем не менее, даже при стрельбе из орудия, где возможно повышение давления до 3000 . 10 5 Н/м 2 (3000 кгс/см 2), увеличение скорости горения пороха не представляет опасности в отношении повреждения ствола.

Изучение горения нитроцеллюлозных порохов при повышенных давлениях привело к формулировке основных положений закона горения этих порохов:

1) воспламенение пороха в замкнутом объеме происходит мгновенно;

2) горение протекает параллельными слоями с одинаковой скоростью со всех сторон порохового элемента.

Это позволяет путем выбора формы и размеров пороховых элементов управлять притоком газов и обеспечивать получение необходимых баллистических показателей выстрела.

Компоненты нитроцеллюлозных порохов. Нитроцеллюлозные пороха получили наименование от основного своего компонента – нитроцеллюлозы. Именно нитроцеллюлозой, соответствующим
образом пластифицированной и уплотненной, обусловлены основные свойства, характерные для нитроцеллюлозных порохов.

Для превращения нитроцеллюлозы в порох необходим прежде всего растворитель (пластификатор).

Для сообщения пороху ряда специальных свойств применяют добавки: стабилизаторы, флегматизаторы и другие.

Нитроцеллюлоза. Для производства нитроцеллюлозы применяют целлюлозу, которая содержится в хлопке, древесине, льне, пеньке, соломе и т.п. в количестве от 92…93 % (хлопок) до 50…60 % (древесина). Для изготовления высококачественной нитроцеллюлозы
применяют чистую целлюлозу, получаемую из указанного растительного сырья специальной химической обработкой.

Нитрование целлюлозы ведут не чистой азотной кислотой, а ее смесью с серной кислотой. Взаимодействие целлюлозы с азотной кислотой сопровождается выделением воды. Вода разбавляет азотную кислоту, что ослабляет ее нитрующее действие. Серная же кислота связывает выделившуюся воду, которая уже не может препятствовать этерификации.

Чем крепче кислотная смесь, т.е. чем меньше в ней воды, тем больше степень этерификации целлюлозы. Соответствующим выбором состава кислотной смеси можно получить нитроцеллюлозу с заданной степенью этерификации.

Стабилизаторы. В качестве стабилизатора в пироксилиновых порохах применяют дифениламин. Стабилизующее действие дифениламина основано на том, что он легко взаимодействует с первичными продуктами разложения нитроцеллюлозы – окислами азота, азотистой и азотной кислотой, образуя химически стойкие нитрозо- и нитросоединения.

В порохах на труднолетучем растворителе в качестве стабилизатора применяют производные мочевины – централиты.

Флегматизаторы – вещества, уменьшающие скорость горения поверхностных слоев пороховых элементов. В качестве флегматизатора применяют, например, камфору. Камфора представляет собой твердое летучее вещество со специфическим запахом; трудно растворяется в воде, хорошо растворяется в спирте.

Графит. Мелкозернистые и пластинчатые пороха покрывают тонким слоем графита, чтобы устранить электризацию порохов и слипание зерен; кроме того, графитовка повышает гравиметрическую плотность. Так, например, графитовкой удалось повысить гравиметрическую плотность винтовочного пороха с 0,5 до 0,7 кг/дм 3 , при этом вместимость гильзы увеличилась с 2,5 до 3,48 г пороха.

Свойства нитроцеллюлозных порохов. Баллистические свойства порохов оценивают по начальной скорости снаряда, максимальному давлению пороховых газов и вероятному отклонению начальных скоростей в серии выстрелов. Способность пороха сохранять постоянство этих трех величин при длительном хранении называют баллистической стабильностью пороха.

  • 1 общая характеристика направления подготовки дипломированного специалиста «химическая технология энергонасыщенных материалов и изделий»

    Государственный образовательный стандарт

    Нормативный срок освоения основной образовательной программы подготовки дипломированных специалистов по направлению «Химическая технология энергонасыщенных материалов и изделий» при очной форме обучения 5,5 лет.

  • Временные требования к основной образовательной программе послевузовского профессионального образования по отрасли 05 00 00 Технические науки

    Документ

    1.1. Временные требования к основной образовательной программе послевузовского профессионального образования (далее – Временные требования) по отрасли наук Технические науки вводятся в соответствии с постановлением Правительства Российской

  • 4 содержание подготовки выпускников 4 1 соответствие разработанных проп и учебно-методической документации требованиям гос

    Основная образовательная программа

    Подготовка специалистов осуществляется в соответствии с лицензией А № 3 от 30.12.2002 г. по следующим основным профессионально-образовательным программам, представленным в табл.

  • Общероссийский классификатор специальностей по образованию ок 009-2003 (принят и введен в действие постановлением госстандарта рф от 30 сентября 2003 г n 276-ст) (с изм и доп 1/2005) (с изменениями от 31 марта 2010 г) russian classification

    Регламент

    Общероссийский классификатор специальностей по образованиюОК 009-2003(принят и введен в действие постановлением Госстандарта РФ от 30 сентября 2003 г. N 276-ст)(с изм.

  • Самостоятельная работа студентов (9)

    Самостоятельная работа

    Самостоятельная работа студентов: методические рекомендации по дисциплине ОПД.Ф.13 «Основы технологической безопасности энергонасыщенных материалов» для студентов специальности 240301.

  • Импульс, необходимый для возбуждения взрыва, сообщается заряду промышленного ВВ в результате взрыва небольшого по вели­чине заряда инициирующего ВВ, размещенного в (КД), (ЭД) непосредственно или через более мощный промежуточный детонатор Р≈200÷400 г и более для инициирования низко-чувствительных (гранулированных, литых, водонаполненных ВВ). Детонацию инициирующих ВВ возбуждают тепловым импульсом в КД горящей пороховой сердцевиной ОШ, в ЭД и электрозажигательных устройствах горящей капелькой воспламенительного состава, расположенного на мостике накаливания электровоспламенителя, или пламенем замедляющего состава в ЭД КЗ и замедленного ЭД ЗД.

    На открытых работах, рудниках роль инициирующего заряда, размещаемого в заряде ВВ выполняет ДШ, сердцевина которого выполнена из мощного ВВ на конец которого завязывают промежуточный детонатор. Для возбуждения взрыва ДШ обязательно применение КД и ЭД.

    Средства инициирования - совокупность принадлежностей для инициирования зарядов про­мышленных ВВ.

    Инициирующие ВВ:

    Первичные инициирующие ВВ способны взрываться в зарядах малого веса и размера (доля грамма), обладают весьма высокой чувствительностью к механическим и тепловым воздействиям; горе­ние этих ВВ почти мгновенно переходит в детонацию.

    Первичные инициирующие ВВ (гремучая ртуть, азид свинца, тенерес)

    Вторичные инициирующие ВВ - (тетрил, гексоген, тэн) предназначены для увеличения энергии начального импульса, сообщаемого зарядом первичного инициирующего ВВ, и детонирования заряда промышленного ВВ. Они менее чувствительны к внешним воздействиям, но имеют большую скорость детонации, теплоту взрыва и более высокую инициирующую способность по сравнению с первичным инициирующим ВВ.

    Характерной особенностью инициирующих взрывчатых веществ (ИВВ) является то, что горение их легко переходит в детонацию. ИВВ также легко детонируют под воздействием простого начального импульса (луча огня, накола, удара и т. п.) Именно эти особенности позволили использовать их для изготовления инициаторов. Однако вследствие высокой чувствительности ИВВ к начальному импульсу при производстве их, а также при их применении следует принимать особые меры предосторожности. В настоящее время из ИВВ наиболее широко используют гремучую ртуть, азид свинца и тринитрорезорцинат свинца (ТНРС).

    Гремучая ртуть Hg (ONC) 2 - представляет собой кристаллический порошок белого или серого цвета с насыпной плотностью 1,22-1,25 г/см 3 . Плотность кристаллов колеблется от 4,30 до 4,42 г/см 3 .

    Свободно насыпанная в небольшом количестве (до 1 г) гремучая ртуть при поджигании дает вспышку; при воспламенении в больших количествах происходит взрыв. Если же гремучую ртуть запрессо­вать под давлением 250-350 кгс/см 2 , то при воспламенении ее всегда происходит взрыв.

    Поэтому гремучую ртуть при производстве электродетонаторов по­мещают в медную или бумажную гильзы.

    Азид свинца Pb(N 3) 2 представляет собой мелкокристаллический белого цвета порошок плотностью 4,73 г/см 3 .

    К механическим видам воздействия (удар, трение и т. п.) азид свинца менее чувствителен, чем гремучая ртуть. Азид свинца также значительно труднее, чем гремучая ртуть, воспламеняется от луча огня. Это является его существенным недостатком: для безотказ­ного действия детонаторов необходимо поверхность азида свинца покрывать слоем тринитрорезорцината свинца.

    В противоположность гремучей ртути, прессование почти не­изменяет чувствительности азида свинца к начальному импульсу.

    Азид свинца обладает высокой инициирующей способностью (примерно в 10 раз большей, чем гремучая ртуть).

    Теплота взрыва азида свинца равна 364 ккал/кг. Объем газов взрыва составляет 308 л/кг. Скорость детонации азида свинца 4,5- 4,8 м/с.

    Тринитрорезорцинад свинца (ТНРС)

    представляет собой золотисто-желтые, темнеющие на воздухе кри­сталлы плотностью около 3,1 г/см 3 . THPС плохо растворим в воде и в органических растворителях. ТНРС значительно легче воспламеняется от луча огня, чем азид свинца, но значительно уступает ему по инициирующей способ­ности. Поэтому ТНРС не применяют в качестве самостоятельного инициирующего ВВ, а используют в электродетонаторах совместно с азидом свинца.

    Инициирующие взрывчатые вещества обладают наибольшей чувствительностью к внешним воздействиям. Развитие процесса детонации в них, т. е. установление детонационной скорости, происходит за очень малый промежуток времени, почти мгновенно, и поэтому они способны детонировать в очень малых количествах (порядка десятых долей грамма) от таких простых начальных импульсов, как искра, луч пламени, накол, возбуждая взрывчатое превращение в других, менее чувствительных веществах.

    Весьма большая чувствительность и слабые взрывчатые характеристики инициирующих взрывчатых веществ не позволяют использовать их в качестве основных взрывчатых веществ для получения от них механической работы.

    Гремучая ртуть получается из металлической ртути путем обработки ее азотной кислотой и этиловым спиртом в присутствии некоторых добавок (соляной кислоты и медных опилок). В результате после

    Промывки образуется белый кристаллический порошок, очень чувствительный ко всякого рода внешним воздействиям, а потому требующий крайне осторожного обращения с ним.

    При увлажнении гремучая ртуть теряет свои взрывчатые свойства; при содержании 10% влаги только горит и не взрывается, а при 30% влажности даже не загорается.

    В кислотах и щелочах гремучая ртуть разлагается, а концентрированная серная кислота вызывает ее взрыв.

    С металлами практически не взаимодействует, лишь с алюминием она энергично реагирует, выделяя тепло и образовывая невзрывчатые соединения. С медью, из которой изготовляются гильзы капсюлей-детонаторов и чашечки капсюлей-воспламенителей, гремучая ртуть может взаимодействовать лишь в присутствии влаги, но химические реакции при этом идут крайне медленно с образованием фульмината меди - вещества, более чувствительного к трению, удару и нагреву.

    Изменения температуры в пределах обычных ее колебаний не влияют на стойкость гремучей ртути, но длительное нагревание при температурах более +50° С приводит к ее разложению и к потере ею взрывчатых свойств. При температуре ниже -100° С гремучая ртуть также теряет свои взрывчатые свойства.

    Гремучая ртуть в настоящее время применяется только для снаряжения капсюлей-детонаторов и электродетонаторов и в капсюльных составах, идущих на снаряжение капсюлей-воспламенителей.

    Азид свинца получается из металлического натрия и свинца в результате взаимодействия их с аммиаком и азотной кислотой. Азид свинца - единственное из применяемых взрывчатое вещество, не содержащее кислорода. Он представляет собой белый мелкокристаллический порошок, негигроскопичный. При воздействии на него влаги он не снижает своей чувствительности и способности детонировать. Однако в присутствии влаги и при повышенных температурах азид свинца взаимодействует с металлами, образуя азиды металлов (например, азид меди), которые во много раз чувствительнее, чем азид свинца.

    Кислоты, щелочи, углекислый газ (особенно в присутствии влаги) и солнечный свет медленно разлагают азид свинца. Температурные колебания не влияют на его стойкость, но при нагревании до 200°С он начинает разлагаться.

    Азид свинца по сравнению с гремучей ртутью менее чувствителен к искре, лучу пламени и удару; но инициирующая способность азида свинца выше, чем у гремучей ртути. Так, например, для инициирования одного грамма тетрила нужно 0,29 г гремучей ртути и только 0,025 г азида свинца.

    Азид свинца применяется для снаряжения капсюлей-детонаторов и электродетонаторов.

    Тенерес [С6H(NO2)3O2PbH2O], сокращенно ТНРС , представляет собой свинцовую соль стифнииовой кислоты и называется стифнатом свинца или тринитрорезор-цинатом свинца. Это мелкокристаллический порошок золотисто-желтого цвета, мало гигроскопичный и не взаимодействующий с металлами. Кислоты его разлагают. Под действием солнечного света тенерес темнеет и разлагается. Температурные колебания на тенерес действуют так же, как и на азид свинца.

    Взрывчатые вещества. Классификация и свойства.

    Взрывчатыми веществами (ВВ) называются химические соединения или смеси, которые под влиянием определенных внешних воздействий способны к быстрому самораспространяющемуся химическому превращению с образованием сильно нагретых и обладающих большим давлением газов, которые, расширяясь, производят механическую работу.

    Такие химические превращения ВВ принято называть взрывчатым превращением.

    Взрывчатые превращения в зависимости от свойств ВВ и вида воздействия на него могут протекать в форме взрыва или горения.

    Взрыв распространяется по ВВ с большой переменной скоростью, измеряемой тысячами метров в секунду. Процесс взрывчатого превращения, обусловленный происхождением ударной волны по ВВ и протекающий с постоянной (для данного вещества при данном его состоянии) сверхзвуковой скоростью, называется детонацией.

    Горение - процесс взрывчатого превращения, обусловленный передачей энергии одного слоя взрывчатого вещества другому путем теплопроводности и излучения тепла газообразными продуктами.

    Возбуждение взрывчатого превращения ВВ называется инициированием . Для возбуждения ВВ требуется сообщить ему с определенной интенсивностью необходимое количество энергии (начальный импульс), которая может быть передана одним из следующих способов:

    Механическим (удар; накал; трение);
    -тепловым (искра, пламя, нагревание);

    Электрическим (нагревание, искровой разряд);

    Химическим (реакции с интенсивным выделением тепла);

    Взрывом другого заряда ВВ (взрыв капсюля детонатора или соседнего заряда).
    Все ВВ, применяемые при производстве подрывных работ и снаряжению

    боеприпасов, делятся на три основных группы:

    Инициирующие ВВ;

    Бризантные ВВ;

    Метательные ВВ (пороха).


    Схема 12. Классификация взрывчатых веществ (ВВ) (вариант).

    Инициирующие ВВ обладают высокой чувствительностью к внешним воздействиям (удару, трению и воздействию огня). Взрыв сравнительно небольших количеств инициирующих ВВ в непосредственном контакте с бризантными ВВ вызывает детонацию последних.

    Применяется исключительно для снаряжения средств инициирования (капсюлей-детонаторов, капсюлей-воспламенителей и др.)

    Гремучая ртуть (фульминат ртути) - мелкокристаллическое сыпучее вещество белого или серого цвета, ядовита, плохо растворяется в воде. К удару, трению, теплу очень чувствительна, при увлажнении взрывчатые свойства и восприимчивость к начальному импульсу понижаются. Применяется для снаряжения капсюль-воспламенитель (KB) и капсюль-детонатор (КД) в медных или мельхиоровых гильзах.



    Азид свинца (азотистоводороднокислый свинец) - мелкокристаллическое вещество белого цвета, слабо растворяется в воде. К удару, трению, действию огня менее чувствителен, чем гремучая ртуть. Инициирующая способность выше, чем у гремучей ртути. Применяется для снаряжения КД.

    Тенерес (тринитрорезорцинат свинца, ТНРС) - мелкокристаллическое, несыпучее, темно-желтого цвета вещество. В воде слабо растворимое. Чувствительность к удару ниже чувствительности гремучей ртути и азида свинца. Очень чувствителен к тепловому воздействию. С металлами ТНРС не взаимодействует. Ввиду низкой способности применяется с азид свинцом.

    Капсюльный состав используется для снаряжения капсюлей воспламенителей. Представляет собой механические смеси (гремучая ртуть, хлорат калия (бертолетова соль) и трехсернистая сурьма (антимоний)).

    Под действием накала или удара KB происходит воспламенение капсюльного состава с образованием луча огня, способного воспламенит или вызвать детонацию инициирующего ВВ.

    Бризантные ВВ .

    Бризантные ВВ более мощны и значительно менее чувствительны к различного рода внешним воздействиям, чем инициирующие ВВ. Взрываются от промежуточного детонатора (КД, взрыв другого ВВ). Сравнительно невысокая чувствительность бризантных ВВ к удару, трению и тепловому воздействию обеспечивает достаточную безопасность, удобство их практического применения. Бризантные ВВ используются в чистом виде в виде сплавов и примесей с другими взрывчатыми веществами.

    Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png